C[)l)llldlaCOIl 2023 Social: @MichaelShah
The C++ festival of India. Web: mshah.io
Courses: courses.mshah.io

YouTube:
www.voutube.com/c/MikeShah

Optimization Design
Patterns

10:00-11:00, Fri, 4th Aug. 2023

CUBE!

Gold Sponsors

60 minutes | Introductory Audienc$

Bloomosrg (FPEEE T I

https://twitter.com/MichaelShah
http://mshah.io
http://courses.mshah.io
http://www.youtube.com/c/MikeShah

C])l)llldlaCOll 2023 Social: @MichaelShah
The C++ festival of India. Web : mshah.io
Courses: courses.mshah.io

YouTube:
www.voutube.com/c/MikeShah

Optimization Besignr
Patterns Strategies

10:00-11:00, Fri, 4th Aug. 2023

Gold Sponsors

INK

CUBE!

60 minutes | Introductory Audieng;

Bloomber ‘
3 TR T R

Fngincering]

https://twitter.com/MichaelShah
http://mshah.io
http://courses.mshah.io
http://www.youtube.com/c/MikeShah

Please do not redistribute slides without prior
permission.

Your Tour Guide for Today

by Mike Shah

Associate Teaching Professor at Northeastern University in

Boston, Massachusetts.
o | teach courses in computer systems, computer graphics, and game
engine development.
o My research in program analysis is related to performance building
static/dynamic analysis and software visualization tools.

| do consulting and technical training on modern C++,

DLang, Concurrency, OpenGL, and Vulkan projects
o (Usually graphics or games related)

| like teaching, guitar, running, weight training, and anything
in computer science under the domain of computer graphics,
visualization, concurrency, and parallelism.

Contact information and more on: www.mshah.io

More online training at

http://www.mshah.io
http://courses.mshah.io

Code for the talk

e Located here: https://github.com/MikeShah/Talks/tree/main/2023/2023 cppindia

2023 [/ 2023_cppindia

3:) MikeShah

array.cpp

array_bad.cpp

cachingl.cpp

cachingl.s

https://github.com/MikeShah/Talks/tree/main/2023/2023_cppindia

e The abstract that you read and enticed

Abstract you to join me is here!

"Premature optimization is the root of all evil" is a saying credited to Donald Knuth
that speaks to many programmers with experience - now anecdotally | have
observed folks overlooking the next sentence stating: "Yet we should not pass up
our opportunities in that critical 3%". In this talk, the audience will be introduced to
some common optimization design patterns. | will discuss precomputation, lazy
versus eager evaluation, batching, caching, specialization, hinting, hashing, and
using your compiler among 'optimization design patterns' that every programmer
should be aware of. Examples will be demonstrated in Modern C++, and the goal is
for the audience to leave feeling comfortable implementing each optimization
design pattern to improve performance of their code.

How many of you have heard this phrase?
(On the next slide...)

“premature optimization is the
root of all evil [or at least most
of it in programming].” -
Donald Knuth

How many of you have read Knuth’s Paper in
which this is quoted?

Structured Programming with go to Statements (1/3)

e The original paper is filled with lots of gems
(including the famous quoted statement) evil.

premature optimization is the root of all

Structured Programming with go to Statements

DONALD E. KNUTH
Stanford University, Stanford, California 94304

A consideration of several different examples sheds new light on the problem of creat-
ing reliable, well-structured programs that behave efficiently. This study focuses
largely on two issues: (a) improved syntax for iterations and error exits, making it
possible to write a larger class of programs clearly and efficiently without go to state-
ments; (b) a methodology of program design, beginning with readable and correct
but possibly inefficient programs that are systematically transformed if necessary int,
efficient and correet, but possibly less readable code. The discussion brings out o
posing points of view about whether or not go to statements should be aholish
some merit is found on both sides of this question. Finally, an attempt is mad:
define the true nature of structured programming, and to recommend fruitful dj
tions for further study.

Keywords and phrases: structured programming, go to statements, language design,
event indicators, recursion, Boolean variables, iteration, optimization of programs,
program transformations, program manipulation systems searching, Quicksort,
efficiency

CR categories: 4.0, 4.10, 4.20, 5.20, 5.5, 6.1 (5.23, 5.24, 5.25, 5.27)

e There’s also this one too right after!

premature optimization is the root of all
evil. Yet we should not pass up our opportunities
in that critical 3 %.

Structured Programming with go to Statements

DONALD E. KNUTH
Stanford University, Stanford, California 94304

A consideration of several different examples sheds new light on the problem of creat-
ing reliable, well-structured programs that behave efficiently. This study focuses
largely on two issues: (a) improved syntax for iterations and error exits, making it
possible to write a larger class of programs clearly and efficiently without go to state-
ments; (b) a methodology of program design, beginning with readable and correct
but possibly inefficient programs that are systematically transformed if necessary int,
efficient and correet, but possibly less readable code. The discussion brings out o
posing points of view about whether or not go to statements should be aholish
some merit is found on both sides of this question. Finally, an attempt is mad:
define the true nature of structured programming, and to recommend fruitful dj
tions for further study.

Keywords and phrases: structured programming, go to statements, language design,
event indicators, recursion, Boolean variables, iteration, optimization of programs,
program transformations, program manipulation systems searching, Quicksort,
efficiency

CR categories: 4.0, 4.10, 4.20, 5.20, 5.5, 6.1 (5.23, 5.24, 5.25, 5.27)

e And where exaCtly to optimize premature optimization is the root of all

evil. Yet we should not pass up our opportunities
in that critical 3 %.

Structured Programming with go to Statements It is often a mistake to
DONALD E. KNUTH make a priori judgments about what parts of a
Stanford University, Stanford, California 94805 program are really critical, since the universal

experience of programmers who have been using

A consideration of several different examples sheds new light on the problem of creat- measurement tools has been that their intuitive

ing reliable, well-structured programs that behave efficiently. This study focuses guesses fail.
largely on two issues: (a) improved syntax for iterations and error exits, making it
possible to write a larger class of programs clearly and efficiently without go to state-
ments; (b) a methodology of program design, beginning with readable and correct
but possibly inefficient programs that are systematically transformed if necessary int,
efficient and correet, but possibly less readable code. The discussion brings out o
posing points of view about whether or not go to statements should be aholish
some merit is found on both sides of this question. Finally, an attempt is mad:
define the true nature of structured programming, and to recommend fruitful dj
tions for further study.

Keywords and phrases: structured programming, go to statements, language design,
event indicators, recursion, Boolean variables, iteration, optimization of programs,
program transformations, program manipulation systems searching, Quicksort,
efficiency

CR categories: 4.0, 4.10, 4.20, 5.20, 5.5, 6.1 (5.23, 5.24, 5.25, 5.27)

(potentially bad if facing a new challenge)

‘premature
‘But never
optimizing when the
opportunity is available is also
evil

- This Is how | paraphrase
Knuth to my students

(*Again, Knuth is not saying to never optimize)

13

Optimization is Tricky

(You're going to see in my examples!)

14

More from Knuth [Original Paper link] (1/4)

(From Knuth's paper)

Structured Programming with go to Statements

DONALD E. KNUTH
Stanford University, Stanford, California 94308

xamples sheds new light on the problem of creat-
that behave efficiently. This study focusa

define

tions

Key : goto language design,
eve , recursion, Boolcan variables, iteration, optimization of programs,
pro jons, program manipulation systems searching, Quicksort
effic

CR categories: 4.0, 4.10, 4.20, 520, 5.5, 6.1 (5.23, 5.24, 5.25, 5.27)

This study focuses largely on two issues:

(b) a methodology of program
design, beginning with readable and correct,
but possibly inefficient programs that are
systematically transformed if necessary into
efficient and correct, but possibly less

/\ readable code.

15

http://web.archive.org/web/20130731202547/http://pplab.snu.ac.kr/courses/adv_pl05/papers/p261-knuth.pdf

e Optimization *might” result
in you making trade-offs

beyond space and time
o e.g. readability,
maintainability, and
sometimes even
correctness/precision

Structured Programming with go to Statements

DONALD E. KNUTH
Stanford University, Stanford, California 94308

A consideration of several different examples sheds new light on the problem of creat-
i focusa

o

possi

effici
osi

CR categories: 4.0, 4.10, 4.20, 5.20, 5.5, 6.1 (5.23, 5.24, 5.25, 5.27)

This study focuses largely on two issues:

(b) a methodology of program
design, beginning with readable and correct,
but possibly inefficient programs that are
systematically transformed if necessary into
efficient and correct, but possibly less

/‘ readable code.

16

http://web.archive.org/web/20130731202547/http://pplab.snu.ac.kr/courses/adv_pl05/papers/p261-knuth.pdf

e However, | might add,
sometimes the simplest

code is the most optimized!
o It's easiest for the hardware to
predict -- so we really have to
know the whole software and
hardware stack!

Structured Programming with go to Statements

DONALD E. KNUTH
Stanford University, Stanford, California 94308

A consideration of several different examples sheds new light on the problem of creat-
i focusa

o

possi

effici
osi

CR categories: 4.0, 4.10, 4.20, 5.20, 5.5, 6.1 (5.23, 5.24, 5.25, 5.27)

This study focuses largely on two issues:

(b) a methodology of program
design, beginning with readable and correct,
but possibly inefficient programs that are
systematically transformed if necessary into
efficient and correct, but possibly less

/‘ readable code.

17

http://web.archive.org/web/20130731202547/http://pplab.snu.ac.kr/courses/adv_pl05/papers/p261-knuth.pdf

Will some patterns that |
demonstrate obfuscate and make

your code harder to read?
o Maybe (though they are simple for S:
today’s introduction)
But hopefully you'll become familiar
with some tools to help you choose
the right optimization strategy.

of program
ole and correct,
ms that are

design, beginning with

but possibly inefficient pro
R systematically transformed

Stanford University, Stanford, California 94305

ecessary into
T efficient and correct, but possibly less

e
ing relial tured prcg rams th bohave ellcio uy 'rh. mdy (ome
argely o syntax for e

ible t -ogra ar] t i out -

thodology of pr gmnde n, beginning with readable and correct, o

u o
effi rrect, but pmbl /e srcu.d bl code. The discussion brings out op-
pos about whether o to statements uhould be aholished/
s0 a both s n o(ﬂuaqwum quy ttempt is made to
define the o fruitful diree-
tions for ly.

Key ases: il language design,
evel , recursion, Boolean variables w ation, optimizal t.lon of proanms
program i program sys t,ems searching, Quicksor
efficiency

CR categories: 4.0, 4.10, 4.20, 5.20, 5.5, 6.1 (5.23, 5.24, 5.25, 5.27)

http://web.archive.org/web/20130731202547/http://pplab.snu.ac.kr/courses/adv_pl05/papers/p261-knuth.pdf

(Aside) CPU, Hard drive, and general Architecture

e This talk is too short to discuss how hardware works -- BUT there are some
great talks you could watch to get up to speed and are also performance

related

o code::dive conference 2014 - Scott Meyers: Cpu Caches and Why You Care
m https://www.youtube.com/watch?v=WDIkqP4JbkE

o CppCon 2014: Mike Acton "Data-Oriented Design and C++"
m https://www.youtube.com/watch?v=rX0ItVEVjHc

o CppCon 2016: Timur Doumler “Want fast C++? Know your hardware!"
m https://www.youtube.com/watch?v=BP6NxVxDQIs

o CppCast Episode 287: Trading Systems with Carl Cook
m hitps://youtu.be/nmlJqiOtWSs?t=948 (Specifically on the challenges)

o "Performance Matters" by Emery Berger
m https://www.youtube.com/watch?v=r-TLSBdHe1A

o CppCon 2016: Chandler Carruth “High Performance Code 201: Hybrid Data Structures"
m https://www.youtube.com/watch?v=vEIZc6zSIXM

19

https://www.youtube.com/watch?v=WDIkqP4JbkE
https://www.youtube.com/watch?v=rX0ItVEVjHc
https://www.youtube.com/watch?v=BP6NxVxDQIs
https://youtu.be/nmIJqiOtWSs?t=948
https://www.youtube.com/watch?v=r-TLSBdHe1A
https://www.youtube.com/watch?v=vElZc6zSIXM

(Aside) Compiler Optimizations

e Compilers aren’t really a pattern but a great place to look

for ‘themes’ in how to write fast code.

o It's good to be familiar with compiler optimizations so you know these

themes.
m (It will help you hand tune code as well)

o It's good to be familiar with compiler optimizations so you know what
they will do with certainty for you

o Run the different optimization levels is a good skill for new
programmers to know about.

Types of optimization

Factors affecting
optimization

Common themes

v Specific techniques

Loop optimizations
Data-flow optimizations
SSA-based optimizations

Code generator
optimizations

Functional language
optimizations

Other optimizations

Interprocedural
optimizations

Practical considerations

https://en.wikipedia.org/wiki/Optimizing_compiler

20

https://en.wikipedia.org/wiki/Optimizing_compiler

Goal(s) for today

What you're going to learn today

e Today this talk is a ‘grab-bag’ of
optimization design strategies that
may (or may not) improve the

performance of your code.

o Atthe least, you'll know a few strategies
that exist and that you can try to apply
to your code today!

Pretend these seats are filled :)
https://pixnio.com/free-images/2017/03/11/2017-03-11-16-47-11-550x413.j

22

https://pixnio.com/free-images/2017/03/11/2017-03-11-16-47-11-550x413.jpg

Warning -- this talk does include occasional performance numbers.
They are very small ‘microbenchmarks’ for learning.

Please validate on your architecture on data sets relevant to your program

Rated ‘E’ For Everyone!

E (Yup, let’s just do our best to make C++ fun
| for everyone involved)

Optimization Patterns
(Or really strategies/trade-offs)

Optimization Patterns/Strategies/Trade-offs (1/2)

e 'Patterns’ are ‘blueprints’ or ‘recipes’ that might help solve a problem
e \When it comes to optimizations, | think there are a few strategies that can be

useful

o It's probably more accurate to however describe these as ‘strategies’ or ‘trade-offs’ for
obtaining more of something (where ‘more’ today is usually faster execution).

e How | determine a pattern, needs further academic formalization -- I'm not

necessarily looking for bit hacks (e.g. a*=2 versus a << 2)
o But rather opportunities where | am trading space for time.

25

Let me summarize this for
you in the next slide(s)

(Note: I'll run through the next
20 or so slides quickly and you
can review them in detail later)

26

Writing
Efficient
rams

Jon Louis Bentley

From John Bentley’s Rules of
Performance

Next few slides based off of MIT’s Performance Engineering
course and my 2020 Performance Engineering course

Space-for-Time Rules
1. Data Structure Augmentation
2. Store Precomputed Results
3. Caching
Time-for-Space Rules
1. Packing
2. Interpreters
Loop Rules
. Code Motion Out of Loops
. Combining Tests
. Loop Unrolling
. Transfer-Driven Loop Unrolling
. Unconditional Branch Removal
. Loop Fusion
Logic Rules
1. Exploit Algebraic Identities
2. Short-Circuit Monotone Functions
3. Reorder Tests
4. Precompute Logical Functions
5. Control Variable Elimination
Procedure Design Rules
1. Collapse Procedure Hierarchies
2. Exploit Common Cases
3. Use Coroutines
4. Transform Recursive Procedures
5. Use Parallelism
Expression Rules
1. Initialize Data Before Runtime
. Exploit Algebraic Identities
. Eliminate Common Subexpressions
. Combine Paired Computation
. Exploit Word Parallelism

DUA WN =

b WwWwN

27

Trade-offs

There are a few key trade-offs we can make on data structures:

e Space-for-time
e Time for Space
e Space and Time

As | sometimes say, “Computer Science is all about understanding trade-offs” -

Mike 3|

e (And sometimes--you are lucky enough to get both space and time benefits!)

28

MOdlfylng Data - SpaCe-fOr-time | Data Structure Augmentation (1/2)

. . head
e You can add information to a data
structure to make common operations !
faster 5 —l IR
o e.g. Singly Linked List ‘append’

o Normally appending requires walking the
entire linked list and appending at the end of head tail
the linked list a new node

o Can be spend up by adding a ‘tail’ pointer to

directly access the tall

—> —> —

I\/IOdIfylng Data - Space-fOr-time | Data Structure Augmentation (2/2)

head
e You can add information to a data Liacia

structure to make common operations I ‘

faster
o e.g. Singly Linked List ‘append’

o Normally appending requires walking the

entire linked list and appending at the end of head tail
the linked list a new node ‘

o Can be spend up by adding a ‘tail’ pointer to T *
directly access the tall I_)

m Small memory cost overall of

maintaining one additional pointer

LinkedL1ist

node* m_head;
node* m_taill;

30

MOdlfylng Data - SpaCe-fOr-time | Store Pre-computed Result (1/3)

e The example on the right shows
computing the ‘nth’ fibonacci number Al

o And we compute the result multiple times } i
throughout our program

o This operation costs O(2N) time
m (or about 10 seconds on my

return fib(n-1) + fib(n-2);

. . . int main(){
machine running this program A
) . onst long NthNumberToCompute = 45;
m The reason is we are recomputing
long fibComputationl = fib(NthNumberToCompute);
the same results frequently. long fibComputation2 = fib(NthNumberToCompute);
A printf("fibComg itonl: %Lld\n",fibComputationil);
/ \ printf("fibComputation2: %ld\n",fibComputation2);
R k
/ \ /\ return 0;
EE E R
\ /\ /\ mike:code$ time ./fib
E EE BE E fibComputationl: 1836311903
//\\ fibComputation2: 1836311903
F Ok

0m9.204s
0m9.203s
om0 .000s

MOdlfylng Data - SpaCe-fOr-time | Store Pre-computed Result (2/3)

We can speed up Fibonacci by caching the

result (Memoization)
o This optimization works because we:

Drumroll for the resuilt....

. . }
Have a generally expensive function

PRECOMPUTED_VALUES 100

long FIB_TABLE[PRECOMPUTED_VALUES];

g initialize_table(){
for(long i= ©; i1 < PRECOMPUTED_VALUES; i++){

FIB_TABLE[1] = -1;

}

long fib_memo(long n){

The argument space is relatively small (1
argument of integer type)

Function has no side effects

Function is deterministic

if(FIB_TABLE[n] != -1){
return FIB_TABLE[n];
}

if(n<=1){

FIB_TABLE[n] = 1;
return 1;

}

FIB_TABLE[n] = fib_memo(n-1) + fib_memo(n-2);
eturn FIB_TABLE[n];

int main(){

long NthNumberToCompute = 45;
initialize_table();

long fibComputationl =
long fibComputation2 =

printf("fibComputationi
printf(”fibComputation

%ld\n",fibComputationl);
%ld\n",fibComputation2);

return 0;

fib_memo(NthNumberToCompute);
fib_memo(NthNumberToCompute);

32

MOdlfylng Data - SpaCe-fOr-time | Store Pre-computed Result (3/3)

e We can speed up Fibonacci by caching the
result (Mem0|zatlon) H‘r}r"zué}ii?g?b}eg)éRECOMPUTED_VALUES; {++

o This optimization works because we: o i
m Have a generally expensive function

m The argument space is relatively small (1

long fib_memo(long n){

if(FIB_TABLE[n] != -1){
return FIB_TABLE[n];

argument of integer type)
Function has no side effects
Function is deterministic

}

if(n<=1){

FIB_TABLE[n] = 1;
return 1;

}

FIB_TABLE[n] = fib_memo(n-1) + fib_memo(n-2);
eturn FIB_TABLE[n];

e Drumroll for the resuilt....

int main(){

mike:code$ time ./fib_table
fibComputationl: 1836311903
fibComputation2: 1836311903

long NthNumberToCompute = 45;
initialize_table();

long fibComputation1l = fib_memo(NthNumberToCompute);
long fibComputation2 = fib_memo(NthNumberToCompute);

OmO.002s
OmO.002s
OmO.000s

printf("fibComputation1i: %ld\n",fibComputationl);
printf(”fibComputation %ld\n",fibComputation2);

turn 0;

33

Modlfylng Data - Time-for-Space | Packing/Compression

e Reduce space of data by storing processed results
o e.g. Data compression(e.g. .zip, .rar) by eliminating repetitions (LZ77)
o Just a cool example: https://www.youtube.com/watch?v=2NBG-sKFaB0

e Useful on embedded devices for example
e Or if you are trying to limit bandwidth usage on networked applications

e Other practical tips
o Use smaller data sizes
m i.e. If your range is only 0-255, use a char not an ‘int’ --
e (Aside: very common use case for storing RGB color values for instance, and
frequently | see folks use ‘int’)

34

https://towardsdatascience.com/how-data-compression-works-exploring-lz77-3a2c2e06c097
https://www.youtube.com/watch?v=2NBG-sKFaB0

Modlfylng Data - Time-for-Space | Interpreters

e e.g. Python
o It's an interpreted language (reads byte
code)

o No need to generate binaries (.o, .exe,
etc.) files, just need the source code!

o The language thus describes the
computation, no need to store opcodes

e Does not have to be a full
language either
o Could be reading in data from a file

during run-time for example as
opposed to storing in the binary.

How Python Interpreter Works?

Editor

Python Interpreter

w
°)
c
A
o

File

Virtual

—_— C li e
-) ompHet: code’ Machine

]

pld

Library
modules

Running
Program

35

Modifying Data - Space-and-Time | packing (1/2)

e \We try to store (or encode) more data into a machine word

o Why does it make things faster?
m This results in less ‘fetches’ to memory for data.
m (This is also more space efficient!)

e Here's an example using ‘bit fields’ in C.

36

Modifying Data - Space-and-Time | packing (2/2)

e \We try to store (or encode) more data into a machine word

o Why does it make things faster?
m This results in less ‘fetches’ to memory for data.
m (This is also more space efficient!)

e Here's an example using ‘bit fields’ in C.

Second caveat--decoding (unpacking) may take more time--in

which case the optimization may involve more work if you have

to decode before using this data. 37
More: https://compileroptimizations.com/category/bitfield_optimization.htm

https://compileroptimizations.com/category/bitfield_optimization.htm

Modifying Data - Space-and-Time | simp

Single Instruction Multiple Data

(@)

(@)

Execute a single operation on multiple
data items
Both faster and less storage

Can be used

(@)

(@)

If same operation is used on all data
items.

(We’ll explore this a bit more later in the
course!)

SIMD Mode

A6

B6

85 I 84

A7

E

A6+B6

A5+851AA+54

Scalar Mode

38

Modifying the Code Structure

Modifying Code

There are a few key trade-offs we can make on how we structure our code:

Loops

Logic

Functions (Procedures)
Expressions

Parallelism
o (We'll discuss in future lecture as they are more architecture specific)

Some of these are common enough, our compilers can actually assist us as well!

40

Modifying Code | Loops

e Loops are especially important to optimize?
e Why--because we spend so much of our time executing in loops

e Let'slook at a few optimizations within loops
o Code Motion

Sentinel Loop Exit Test

Loop Unrolling

Partial Loop Unrolling

Loop Fusion

o O O O

Modifying Code | Loops -- Code Motion (1/3)

Move code outside of loop that does not need to be recomputed.

o More on lazy code motion: https:/www.cs.cornell.edu/courses/cs6120/2019fa/blog/lazy-code-motion/)

#define ITERATIONS 1000000

double approx_pi(){
return 22.0/7.0;
}

int main(){

double circumferences[ITERATIONS];
for(int i=0; i < ITERATIONS; i++){

circumferences[i] = 2*approx pi()*i;

}

return 0;

approx_pi() is used to generate some work for the benchmark, not because | don’t like writing 3.1415

#define ITERATIONS 1000000

double approx pi(){
return 22.0/7.0;
}

int main(){
double circumferences[ITERATIONS];

double PI times 2 = 2*approx pi();
for(int i=0; 1 < ITERATIONS; i++){

circumferences[i] = PI times 2*i;

}

return 0;

https://www.cs.cornell.edu/courses/cs6120/2019fa/blog/lazy-code-motion/

Modifying Code | Loops -- Code Motion (2/3)

e Move code outside of loop that does not need to be recomputed.
o More on lazy code motion: https:/www.cs.cornell.edu/courses/cs6120/2019fa/blog/lazy-code-motion/)

Careful however! Experimental results show code motion made
this example slower!

Why could this be?

:code$ gcc code motion on.c -o code motion on

mike:code$ gcc code motion off.c -o code motion off :code$ time ./code motion on

mike:code$ time ./code motion off

Omo.019s
OmoO.011s
Omo.008s
:code$ time ./code motion on

OmO.009s
OmO.000s
Om0.009s

approx_pi() is used to generate some work for the benchmark, not because | don’t like writing 3.1415

43

https://www.cs.cornell.edu/courses/cs6120/2019fa/blog/lazy-code-motion/

Modifying Code | Loops -- Code Motion (3/3)

Careful however! Experimental results show code motion made this example slower!

Why could this be?
e Memory fetches (reads of variable) might be more expensive!
o Actual computation is thus not that costly to perform each iteration (sqrt, or some
other operation may be however)
e We need to see the assembly if the compiler would actually perform this optimization!

mike:code$ gcc code motion on.c -o code motion on
mike:code$ time ./code motion on

mike:code$ gcc code motion off.c -o code motion off
mike:code$ time ./code motion off

real Om0.019s

Omo.009s user 0mo.011s

OmoO.000s sys Om0.008s
0mO.009s mike:code$ time ./code motion on

44

https://www.cs.cornell.edu/courses/cs6120/2019fa/blog/lazy-code-motion/

Modifying Code | Loops -- Sentinel Loop Exit Test

e Exiting early is another way to save on performance--no need to continue
iterating through the entire collection when a value is found.

int indexOf(char* str,char ch, int size){
for(int i =0; i < size; i++){
if(striil=ch){

int indexOf(char* str,char ch, int size){
int index = -1;
for(int i =0; i < size; i++){

if(str[i]==ch){ fetunn i -

index =i;
}
}

return index;

45

Modifying Code | Loops -- Loop Unrolling imnsien o e oo

e Small loops can be ‘unrolled’ to

avoid comparison computations.
o Generally something the compiler
will figure out for you--but you can
control this by doing it yourself.:w

int main(){

int sum =0;
int Aj4l = {1,2,3,4};

for(int i=0; i < 4; i++){

sum = sum + A[i];

}

sum = A[0] + A[1] + A[2] + A[3];

return 0;

46

Modifying Code | Loops -- Partial Loop Unrolling

e A similar idea where we can [

) int main(){
partially unroll the loop

o Can be especially powerful when S0t =tn 8-
combined with SIMD int A[4] = {1,2,3,4};

for(int i=0; i < 4; i++){
sum = sum + A[i];
}

for(int i=0; i < 4; i+=2){
sum = sum + A[i];
sum = sum + A[i+l1];

return 0;

47

Modifying Code | Loops -- Loop Fusion

We can merge loops together that are
otherwise performing independent
computations.

for (1 =0; 1 < 300; i++)
ali] = a[i] + 3;

for (i = 0; i < 300; i++)
b[i] = b[i] + 4;

Below is the code fragment after loop fusion.

for (i =0; i < 300; i++)
{
alil
b[i]
}

ali] + 3;
b[i] + 4;

48

Modifying Code | Logical Expression - strength Reduction

e (Occasionally we can make a better substitution that logically gives us the
same control flow

[
O

sqrt(x) > 0 X 1=
sqrt(x*x + y*y) < sqrt(a*a + b*b) X*X + y*y < a*a + b*b
In(A) + 1n(B) 1n(A*B)

sin(x)*sin(x) + cos(x)*cos(x) 1

49

Modifying Code | Logic - Reorder Tests (1/2)

if(sqrt(sqr(x1-x2) + sqr(yl-y2)) < (rl1 + r2)){

Logical tests should be arranged so that
inexpensive and often successful tests
precede expensive and rarely successful
tests.

return 1;

}else{

}

return 0;

50

Modifying Code | Logic - Reorder Tests (2/2)

e Logical tests should be arranged so that
inexpensive and often successful tests

precede expensive and rarely successful :
tests.

if(abs(x1-x2) > rl +r2){f
return 0;
}

if(abs(yl-y2) > rl1 +r2){
return 0;

if(sqrt(sqr(x1-x2) + sqr(yl-y2)) < (rl1 + r2)){ }

return 1; if(sqrt(sqr(x1l-x2) + sqr(yl-y2)) < (rl + r2)
}else{ return 1;

_ }else{
return 0; return 0;
} }

Modifying Code | Procedures - Inlining

Eliminates function call overhead by
moving small functions into body of
code.

Also provides further optimization
opportunities for compilers to perform

after the inlining takes place.
o Generally speaking this is one of the
biggest optimizations, because we often
(not always) optimize on a function level.

o https://compileroptimizations.com/category/function _in

lining.htm

int add (int x, int y)
%

I

int sub (int x, int y)

1
}

return x + y;

return add (x, -y);

Expanding add() at the call site in sub() yields:

int sub (int x, int vy)

i
¢

return x + -y;

which can be further optimized to:

int sub (int x, int y)

i
b

return x - y;

https://compileroptimizations.com/category/function_inlining.htm
https://compileroptimizations.com/category/function_inlining.htm

MOd'fylng COde | EXpreSSIOn RUIeS = Constant Propogation

In the code fragment below, the value of x can be propagated to the use of x.

e Simply propagate the result)
o This may also save us on both y
time and space of computing and

storing intermediate values.

3;
X + 4;

Below is the code fragment after constant propagation and constant folding.

X
y

3
i

53

MOdlfylng Code | EXpreSSion Rules - Compile-Time Initialization

e |f a value is constant, we can

make a compile-time constant
o We'll see ‘constexpr’in C++

e Saves the effort of computation

e This may allow us to perform
further constant propagation

e Again enables further
optimizations!

// constexpr function for product of two numbers.
// By specifying constexpr, we suggest compiler to
// to evaluate value at compile time

constexpr int product(int x, int y)

¢ return (x * y);

}

int main()

f
const int x = product(10, 20);
cout << Xx;
return 0;

}

https://www.geeksforgeeks.org/understanding-constexper-specifier-in-c/

54

https://www.geeksforgeeks.org/understanding-constexper-specifier-in-c/

Vec3 Class

Example of more performance patterns and how to possibly iterate through
optimizations

55

VecN class

e So to ground us in some
simple examples to learn
from, let’s start with a class

tect

like this K £ VecN{
o It's an ‘n-element’ vector where
we have a few member 1€ std::vector<T> components;
functions ‘
o We'll use a std::vector to store |
individual elements. 14 VecN(size t elements);

o The data structure is also
templated so that we can
consider storing any type.

Print()

| VecN<T>& operatc L VecN<T>&
3 };

56

Optimization Strategy/Pattern #1:
Caching

Vec3N Member Functions

I've gone ahead and
implemented three member
functions

S tectupe e T>

VecN<T>::VecN(size t elements){

“(size_t 1=0; 1 < elements; ++1){
components.push_back(i);

fe< ename T>

id VecN<T>::Print() o |

(size t 1=0; 1 < components.size(); ++i){
std::cout << components.at(i) << << std::endl;

fe< ename T>

VecN<T>& VecN<T>::operator+=(const VecN<T>& rhs){

for(size_t 1=0; 1 < components.size(); ++1){
components[i] += rhs.components[i];
}

*t+hice
. .9

Recomputation

e |tappears | am recomputing
work very frequently
however!

Anyone spot where?
m (ans: next slide)

28 3

f;)

}

}

Ttect

(size 't

te<

(

e T>

VecN<T>::VecN(siz¢ elements){

ze_ t 1=0; 1 < elements; ++1i){
components.push_back(i);

ime T>

i VecN<T>::Print() t{
“(size_t 1=0; 1 < components.size(); ++1){

std::cout << components.at(i) << << std::endl;

te<

T>

VecN<T>& VecN<T>::operator+=(c t VecN<T>& rhs){

} 4

£ (

i=0; 1 < components.size(); ++1){

components[i] += rhs.components[i];

* + 2

- .
B)

Recomputation ok Rl oo S

VecN<T>::VecN(siz¢ elements){

: :; for(size_t 1=0; 1 < elements; ++1){
e |tappears | am recomputing : CRheranEs ek backeias
work very frequently : }
however! :
o . : 1. 1 ate< me T>
2 1 VecN<T>::Prig ‘
Anyone spot where? ol oy i bl oo ey WY
- I'm constantly CaIIing 4 std::cout << components.at(il) << << std::endl;
5 }
components.size() every 36 }
iteration of every loop :
m For a ‘print’ function 39 1 et knenae T
(which is likely const) why VeCN<I>& VecN<Tx: g
41 for(size_t 1=0;
WOUId I need tO dO th|S’? components[i] +

} 4

*t+hice
. 2.9

Caching 52 templatect o

VecN<T>::VecN(size t elements){

for(size t 1=0; 1 < elements; ++1){
components.push_back(i);

e So here’s the adjustment we

can make before the loop.

o For vectors of very large ‘n’ this
may make some difference
having ‘len’ directly on the stack
(we’ll have to measure)

e Note: pragmatically -- for a
vector -- .size() is just a
lookup and already optimized
-- this function is probably
‘inlined’.

o Presumably for a ‘graph’ or

id VecN<T>::Print

t VecN<T>& rhs){

some more complicated linked
data structure traversal it may
be worth performing this specific
optimization.

components[i] += rhs.components[i];

T

*+h3

Measuring Optimizations

Measurements (1/2)

e So in order to know if our optimization strategy (caching) worked -- we need
to measure each strategy in an experiment
e Here’s an example using ‘time’ running 1_000 000 iterations of add.

mike:2023 italian_cpp$ g++ -Wall -std=c++20 vecN.cpp -o prog && time ./prog
0.
1000001.
2000002.

real OmO.025s

CLENCFETI No optimization -- takes about 0.025 seconds
OmO . 000s

=C++20 cachingl.cpp -o prog && time .

bebsddl Caching a bit faster -- perhaps small enough that our
mo. S .) .

f)
oMo .. 000s computation is noise”

63

Let’s see if we can
tease out more
information from
this using a
different profiler

mike:2023 italian_cpp$ g++ -Wall -std=c++20 vecN.cpp -0 prog &§&
0.
1000001.
2000002.

real OmO.025s
user CLONCFETE No optimization -- takes about 0.025 seconds
sys OmO . 000s

mike:2023_1talian_cpp$ g++ -Wa = =C++20 cachingl.cpp -o prog && time .
0.
1000001.

2000002.

real gmg.gigs Caching a bit faster -- perhaps small enough that our
user mo. s S .

f?
sys oMo . 0005 computation is noise”

perf profiler

e We need a more fine grained measurement to try to understand what our

optimization strategy did -- otherwise again it may just be noise.

o The perf profiler is a well known tool on linux, and your platform may otherwise provide other
useful tools

perf Manual PERF(1)

perf - Performance analysis tools for Linux

SYNOPSIS
perf [--version] [--help] [OPTIONS] COMMAND [ARGS]

Observing Perf

e So from this output, it appears that

we do have:

Less instructions executed

fewer cpu cycles

fewer branches

(oddly more branch-misses though!)

o O O O

mike:2023_1italian_cpp$ g++ -Wall -std=c++20 vecN.cpp -0 prog

mike:2023_1italian_cpp$ sudo perf stat ./prog
: No optimization

Performance counter stats for './prog':

CPUs utilized
K/sec

K/sec

M/sec

GHz

insn per cycle
M/sec

of all branches

20.91 msec task-clock
0 context-switches
0 cpu-migrations
117 page-faults
83,507,688 cycles
213,323,341 instructions
31,578,068 branches
16,847 branch-misses

HHEHHH R R
QOoONWOOO O

0.021152750 seconds time elapsed

0.021166000 seconds user
0.000000000 seconds sys

mike:2023_1italian_cpp$ g++ -Wall -std=c++20 cachingl.cpp -o prog

mike:2023_1italian_cpp$ sudo perf stat ./prog .
0. Caching
1000001.

2000002.
Performance counter stats for './prog':

CPUs utilized
K/sec

K/sec

M/sec

GHz

insn per cycle
M/sec

of all branches

18.78 msec task-clock
0 context-switches
0 cpu-migrations
118 page-faults
76,223,347 cycles
165,337,456 instructions
25,579,300 branches
249,690 branch-misses

HOH R H R R R

0.019094558 seconds time elapsed

0.019133000 seconds user

Perf - was it worth it? (1/3)

Samples: 216 of event 'cycles', Event count (approx.): 84105708
Overhead

One of the first
questions we should
have even asked was if
it was worth

complicating our code
o (i.e. remember Knuth’s
warning?)

Stepping back, we can

generate a ‘perf report’

by ‘recording’ execution
of our program.

[cNoNoNoNoNoNoNoNo)

Command Shared Object

prog
prog
prog
prog
prog
prog
prog
prog
prog
prog
prog
prog
perf
perf
perf
perf
perf

prog

prog

prog

prog

prog

1d-2.27.s0
[kernel.kallsyms]
[kernel.kallsyms]
[kernel.kallsyms]
1d-2.27.s0

libstdc++.50.6.0.29

[kernel.kallsyms]
[kernel.kallsyms]
[kernel.kallsyms]
[kernel.kallsyms]
[kernel.kallsyms]
[kernel.kallsyms]

o \

Command Shared objeci

prog
prog
prog
prog
prog
prog
prog
prog
prog
prog

0.01% perf
0.00% perf

prog

prog

prog

prog

prog
[kernel.kallsyms]
[kernel.kallsyms]
1d-2.27.s0
1d-2.27.s0
[kernel.kallsyms]
[kernel.kallsyms]
[kernel.kallsyms]

S
[
[
[
[
[
[
[
[

k
k

VecN<int>::operator+=
std::vector<int, std::allocator<int> >::size
std::vector<int, std::allocator<int> >::operator[]
std::vector<int, std::allocator<int> >::operator[]
main
_dl_lookup_symbol_x
oxffffffffb4a2865b
oxffffffffb4al2cee
oxffffffffb4a288b6
strcmp
std::locale::operator=
oxffffffffb4a6e62a
oxffffffffb52d1c30
oxffffffffb483casc
oxffffffffb48104be
oxffffffffb4ag78ada

No optimization
oxffffffffb4878ads

ymbol

VecN<int>::operator+=
std::vector<int, std::allocator<int> >::operator[]
std::vector<int, std::allocator<int> >::operator[]
main

std::vector<int, std::allocator<int> >::size
filemap_map_pages
change_protection_range
_dl_lookup_symbol_x
do_lookup_x
strnlen_user
intel_pmu_enable_all
native_write_msr

Perf - was it worth it? (2/3)

Samples: 216 of event 'cycles', Event count (approx.): 84105708

The perf report tells us
where we spent our
time

At first glance it looks
like we made things

worse!
o (i.e.39.14% is less than
54.21%)
o (nextslide)

[cNoNoNoNoNoNoNoNo)

.S0
[kernel.kallsyms]
[kernel.kallsyms]
[kernel.kallsyms]
1d-2.27.s0
libstdc++.50.6.0.29
[kernel.kallsyms]
[kernel.kallsyms]
[kernel.kallsyms]
[kernel.kallsyms]
[kernel.kallsyms]
[kernel.kallsyms]

o \

Command Shared objeci

prog

prog
prog
prog
prog
prog
prog
prog
prog

0.01% perf
0.00% perf

prog

prog

prog

prog

prog
[kernel.kallsyms]
[kernel.kallsyms]
1d-2.27.s0
1d-2.27.s0
[kernel.kallsyms]
[kernel.kallsyms]
[kernel.kallsyms]

tallocator<int> >::size
::vector<int, std::allocator<int> >::operator[]
::vector<int, std::allocator<int> >::operator[]

_dl_lookup_symbol_x
oxffffffffb4a2865b
oxffffffffb4al2cee
oxffffffffb4a288b6
strcmp
std::locale::operator=
oxffffffffb4a6e62a
oxffffffffb52d1c30
oxffffffffb4a83casc
oxffffffffb48104be
oxffffffffb4g78ada

No optimization
oxffffffffb4878ads

::vector<int, std::allocator<int> >::size
filemap_map_pages
change_protection_range
_dl_lookup_symbol_x
do_lookup_x
strnlen_user
intel_pmu_enable_all
native_write_msr

Perf - was it worth it? (3/3)

Samples: 216 of event 'cycles', Event count (approx.): 84105708
Overhead

The perf report tells us
where we spent our
time

At first glance it looks
like we made things

worse!

o (i.e.39.14% is less than
54.21%)

o Consider however, there
is no call to
‘std::vector<...>size’ on
the next line however

o Looks like we have
trimmed some time!

ve

0.
0.
0.
0.
0.
0.
0.
0.
0.

prog

prog
prog
prog
prog
prog
prog
prog
prog
0.01% perf
0.00% perf

.S0
[kernel.kallsyms]
[kernel.kallsyms]
[kernel.kallsyms]
1d-2.27.s0
libstdc++.50.6.0.29
[kernel.kallsyms]
[kernel.kallsyms]
[kernel.kallsyms]
[kernel.kallsyms]
[kernel.kallsyms]
[kernel.kallsyms]

prog

prog

prog

prog

prog
[kernel.kallsyms]
[kernel.kallsyms]
1d-2.27.s0
1d-2.27.s0
[kernel.kallsyms]
[kernel.kallsyms]
[kernel.kallsyms]

::vector<int, std::allocator<int> >::operator[]

::vector<int, std::allocator<int> >::operator[]
main
_dl_lookup_symbol_x
oxffffffffb4a2865b
oxffffffffb4al2cee
oxffffffffb4a288b6
strcmp
std::locale::operator=
oxffffffffb4a6e62a
oxffffffffb52d1c30
oxffffffffb483casc
oxffffffffb48104be
oxffffffffb4878ada

No optimization
oxffffffffb4878ads

:allocator<int> >::operator[]
std::vector<int, std::allocator<int> >::operator[]
main
std::vector<int, std::allocator<int> >::size
filemap_map_pages
change_protection_range
_dl_lookup_symbol_x
do_lookup_x
strnlen_user
intel_pmu_enable_all
native_write_msr

Was Caching a win?

Now, sometimes if we're not
getting a huge performance
boost, we might be solving

the wrong problem or using

the wrong technique.

o As mentioned on my aside,
caching is probably not a huge
performance boost here.

o So there’s a different

optimization strategy we can try

VecN<T>::VecN(size t

fe<t > T>
elements){

for(size t 1=0; 1 < elements; ++1){
components.push_back(i);

"'<" s 3 -
id VecN<T>::Print

t VecN<T>& rhs){

components[i] += rhs.components[i];

T

*+h3

Optimization Strategy/Pattern #2:
Compile-Time Computation

Compile-time (1/2)

e Ultimately we always trade
time and space for

performance

o Butin C++ we can choose to
make that trade-off at
compile-time and run-time as
well!

o Let’s optimize any computation
by templating our function

m Afterall, are we going to
change the ‘size’ of the
n-dimensional vector?

e (For this example,
the answer is no)

length>

t VecN{

std::vector<T> components;

VecN();

Print();

VecN<T,length>& erat VecN<T,length>& rhs);

72

Compile-time (2/2)

Observe we now know the
length at compile-time and no
longer have to query the
length at run-time for our
loops

VecN<T>& rhs);

t VecN{

std::vector<T> components;

VecN();

Print();

VecN<T,length>&

VecN<T,length>& rhs);

C dde OI(0

mike:2023_italian_cpp$ sudo perf stat ./prog

0

1000001.

2000002.

Performance counter stats for './prog':

15.22 msec task-clock
0 context-switches
0 cpu-migrations
118 page-faults
60,718,858 cycles
145,308,561 instructions
23,575,716 branches
16,618 branch-misses

0.015454034 seconds time elapsed

0.015474000 seconds user
0.000000000 seconds sys

Samples: 41 of event 'cycles', Event count (approx.): 60031268
verhead Command Shared Object

0.37%
0.01%
0.00%

prog
prog
prog
prog
prog
prog
prog
perf
perf

prog
prog
prog
prog
[kernel.kallsyms]
[kernel.kallsyms]
[kernel.kallsyms]
[kernel.kallsyms]
[kernel.kallsyms]

Symbol
[.] VecN<int, 3ul>::operator+=
[.] main

HORH R R R R R R

154

QLN WOOOO

.985
.000
.000
.008
.990
.39

.215
.07%

Compile-time

CPUs utilized
K/sec

K/sec

M/sec

GHz

insn per cycle
M/sec

of all branches

[.] std::vector<int, std::allocator<int> >::operator[]
[.] std::vector<int, std::allocator<int> >::operator[]

[k] kfree

[k] __mod_memcg_state

[k] security _bprm_committed creds
[k] native_sched clock

[k] native_write_msr

Optimization Strategy/Pattern #3:
Solve the right problem with the right data
structure
A classic space vs time data structure trade-off

Choose the right data structure (1/2)

e Did we really need the capabillities

of a vector? L
< ; A ength>
o (Note: | have to be careful here if we » struct VecN{
changing the problem)
o Let's assume | did not however, and my
domain (e.g. games) usually have

T components[length];

vectors stay the same size (e.g. 3 13 VecN();
components) when initialized. 15 Print();

o NOte: Th|S iS Often the beSt 7 VecN<T, length>& tor VecN<T,length>& rhs);
optimization strategy -- try another T
data structure or algorithm

76

Samples: 100 of event 'cycles', Event count (approx.): 40643887

Ooverhead Command Shared Object Symbol
prog prog .] VecN<int, 3ul>::operator+=
prog prog .] main
. ! prog [kernel.kallsyms] unmap_page_range
Choose the right data structure (2/ S EEEEs] _L_rétocste_object
prog 1d-2.27.s0 .] _dl_lookup_symbol_x
prog 1d-2.27.s0 .] _dl_debug_initialize
prog 1d-2.27.s0 .] do_lookup_x
prog 1libc-2.27.s0 .] init_cacheinfo
. 71 prog 1d-2.27.s0 .] malloc
o Faster yet agaln' prog [kernel.kallsyms] clear_page_erms
. . 71 prog [kernel.kallsyms] get_mem_cgroup_from_mm
o (And more important -- consistently faster!) 3% prog [kernel.kallsyms] get_page_from_freelist
prog [kernel.kallsyms] apparmor_bprm_committed_creds
1 1 1 perf [kernel.kallsyms] perf_event_addr_filters_exec
® BUt there IS Somethlng bOtherIng me perf [kernel.kallsyms] native_write_msr

O We are Spending IOtS Of tlme in += mike:2023_1italian_cpp$ g++ -Wall -std=c++20 array.cpp -o prog

mike:2023_1italian_cpp$ sudo perf stat ./prog

Performance counter stats for './prog':

CPUs utilized
K/sec

K/sec

M/sec

GHz

insn per cycle
M/sec

of all branches

6.66 msec task-clock
0 context-switches
0 cpu-migrations
119 page-faults
26,987,099 cycles
64,342,603 instructions
11,579,759 branches
16,397 branch-misses

ONN,L_POOOO

#
=
#
=
#
=
#
#

0.006930871 seconds time elapsed

0.006945000 seconds user
0.000000000 seconds sys

77

(Aside)

If switching to an array felt like
cheating, | did go back to our

mike:2023_1italian_cpp$ sudo perf stat ./prog

0.
1000001.
2000002.

Performance counter stats for './prog':

10.48 msec task-clock

0
0

120
43,086,088
99,345,603
11,580,757
16,640

context-switches
cpu-migrations
page-faults
cycles
instructions
branches
branch-misses

CPUs utilized
K/sec

K/sec

M/sec

GHz

insn per cycle
M/sec

of all branches

HOH R R R R R R

very first example and just switch
to a heap allocated array to see

the difference.
o results were ‘noisier’ do to the heap

0.010739591 seconds time elapsed

0.007173000 seconds user real Omo.038s

0.003586000 seconds sys user 6m0.037s
sys 0mo.001s

mike:2023_1italian_cpp$ time ./prog
0.
1000001.
2000002.

mike:2023 italian_cpps [}

allocations (but sometimes still way
faster) -- so sometimes we like more

ce<

VecN{

real
user
sys

0m0.014s
0m0.010s
OmoO.004s

mike:2023_1italian_cpp$ time ./prog

T* components; 0.
t mSize; 1000001.
2000002.

stable guarantees on time as well!

real OmO.015s
¢ elements); user Om0.011s
sys Omo . 004s

VecN(
Print() =

- VecN<T>& rhs);

8 VecN<T>& erator+=(
};

Optimization Strategy/Pattern #4.:
Specialization

Specializing functions

e S0 one optimization strategy we can use is to specialize functions or data

structures
o This means studying carefully a piece of code, finding the use case, and then determining that
we can hand tune it to be faster.
m And preferably do the tuning such that that our compiler cannot do better than us!
o We’re going to take advantage again of compile-time programming to specialize our code.

€ 3te<typename T, size t length>
VecN<T 1ength>& VecN<T,length>::operat onst VecN<T,length>& rhs){
r(size t 1=0; 1 < length; ++1i){

components[i] += rhs.components[i];

} :
g Catch-all case generic case
with no specialization

<t T; length>
VecN<T,length>& VecN<T,length>::operat VecN<T,length>& rhs){
for(si t i=0; 1 < length; ++i){

Specializing functions results ﬁ y T T e

*+

Catch-all case

e First observe that we have added a <

VecN<int, 3>& VecN< ,3>::0perator+=(t VecN< ,3>& rhs){
components[@] += rhs.components[0];

template specialization avoiding a components[1] += rhs.components[1];

components[2] += rhs.components[2];

loop (i.e. getting into compiler 3 return *this; *NEW*Specialization
optimization world)

o This appears to have reduced overall
time spent in operator+= shown below.

Samples: 46 of event 'cycles', Event count (approx.): 51376970
Overhead Command Shared Object Symbol
prog prog .] VecN<int, 3ul>::operator+=
prog prog .] std::vector<int, std::allocator<int> >::operator[]
prog prog .] std::vector<int, std::allocator<int> >::operator[]
prog prog .] main
prog 1d-2.27.s0 .] do_lookup_x
prog [kernel.kallsyms] task_work_run
prog [kernel.kallsyms] unmap_page_range
prog [kernel.kallsyms] perf_output_begin
perf [kernel.kallsyms] native_sched_clock
perf [kernel.kallsyms] native_write_msr

Specializing functions results

e From a performance standpoint, |

got relatively good results

o Perhaps our code layout has changed
enough that we’re not always optimized
however!

o Perhaps on a larger data structure,
specialization can be more impactful --
and perhap enable other optimizations!

m \We may have even enabled
specializations like this for SIMD to
get further performance.

mike:2023 italian_cpp$ time ./prog

Specialization (with array)

OmO.006s

OmO.005s

OmO.000s
1Ke:2023 1talian_cppSs Time ./prog
000001.

Specialization (with vector)

OmO.013s
OmO.013s
OmO.000s

82

Optimization Strategy/Pattern #5:
Multi-phase initialization

83

Multistage setup

e Consider the example to the right 2: te< T, size_t length>
; VecN<T,length>::VecN(){
where we decide we want to use ,
std::vector again as our underlying 3T CORBONERtS . Fes1 26 (LEnOIhT:
. for(e t 1 =0; 1 < length; ++1){
container components[i] = 1i;

o Often times we have data structures
(including vectors) where it might be 3
beneficial to setup the data structure in ' L =05 1 < length; ++1){
muItipIe stages. components.push_back(i);

m i.e. reserve memory first, then
setup components

e Note: For this particular pattern --
we probably need to increase length
to something larger to be more
meaningful in the results.

84

Wrapping up VecN Example

Wrapping up VecN Example

We've played around with a data structure thinking about 5 optimization
strategies

O

(@)
(@)
(@)
(@)

Caching

Compile-Time Computation

Specialization

Solve the right problem with the right data structure
Multi-phase initialization

We have also learned how we might investigate if our program is actually
running faster

(@)

There exist more strategies however that I'd like to share briefly -- and may be discussed in
future talks

86

More Patterns/Strategies

Hinting

Hint on insertion
Nice example on cppreference
showing how ‘hints’ can be used for

speeding up insertion in maps
o https://en.cppreference.com/w/cpp/conta

iner/map/emplace_hint
Consider another example of a list
like data structure where we can
‘skip’ through it for faster
insertion/traversals/searches [e.g.

skip list

int main() {
std::cout << std::fixed << std::setprecision(2);
timeit(map_emplace); // stack warmup
timeit(map_emplace, "plain emplace");
timeit(map_emplace hint, "emplace with correct hint");

timeit(map_emplace

hint_wrong, "emplace with wrong hint");

timeit(map_emplace hint corrected, "corrected emplace");
timeit(map_emplace hint closest, "emplace using returned iterator");

}

Possible output:

22.64
8.81
22.27
7.76
8.30

ms for plain emplace

ms for emplace with correct hint

ms for emplace with wrong hint

ms for corrected emplace

ms for emplace using returned iterator

88

https://en.cppreference.com/w/cpp/container/map/emplace_hint
https://en.cppreference.com/w/cpp/container/map/emplace_hint
https://en.wikipedia.org/wiki/Skip_list

Precomputation

e (C++ Compiler optimizations may do
some of this

(@)

Common subexpression elimination (CSE)
(Figure on right)

e Templates are our tool for doing work at
compile-time
e C++11 and beyond has constexpr

(@)

You should try to constexpr as many things as
possible.

Example:

In the code fragment below, the second computation of the
expression (X + y) can be eliminated.

https://compileroptimizations.com/category/cse_elimination.htm

89

https://compileroptimizations.com/category/cse_elimination.htm

Lazy versus Eager Evaluation

e [Eager evaluation is evaluating the result immediately

e Lazy Computation is to delay our computation

o std::async with std::launch::deferred
o Multiple part construction of our objects as needed

e Copy-on-Write (COW) [wiki]
e Consider ‘short-circuit evaluation’ as another way to avoid work that does not
need to be done when ordering conditionals

90

https://en.cppreference.com/w/cpp/thread/async
https://en.cppreference.com/w/cpp/thread/launch
https://en.wikipedia.org/wiki/Copy-on-write

Batching

e Consider in some domains like
computer graphics, you want to

‘batch’ all of the draw calls together

o (Either through instancing or some other
mechanism)

e More simply -- buffered output is an
example of this optimization

| —] —] 1] -)
el —d — —] td i — —
| 1 | J—] 1 1 a—1 —1
— —d — —y]) — —)

i
i
|
_
_
i
.
_
|

BN B BN BN B B B B O N

s
—
]
]
|

https://learnopenal.com/Advanced-OpenGL/Instancing

91

https://learnopengl.com/Advanced-OpenGL/Instancing

Hashing

. std: :hash<std::string> ()
e Consider that we may want to take some stdisheshouinmiing (CH20
std: :hash<std::u32string> ()

|Ong Value (eg a Iarge StdStrlng) and Std;;hash<std;;wstring> (C++11) hash support for strings

C+EL]
C++17

std: :hash<std::ul6string views
std: :hash<std::u32string view>

. std: :hash<std::pmr::string> (C++17) (class template specialization)
. std: :hash<std::pnr::u8string> (C++20)
Comlete a haSh (USIng Std..haSh) Std::haSh<std::Emr::ulﬁstrigg>(c++l7)
H H H std: :hash<std: :pmr::u32string> (C++17)
o We can then use this hash (i.e. an integral type) s
to reference the object by or otherwise compare std: :hashestd: string view (C++17)
. Stdi EhaSh<std: :wstrlr_1g7v1zlew> (C++17 hash support for string views
two |arger pieces of data. std: :hash<std: :usstring view (C++20
(
(

)
; (class template specialization)
)

92

https://en.cppreference.com/w/cpp/utility/hash

(Silly) Anecdote

e Performance is Tricky!
e | have heard on numerous occasions adding a random ‘printf’ to change the

address layout has improved performance by 10+% before.
o This is in the ‘lore’ in optimization, | first heard about at PLDI at 2013
o Here's a stack overflow post, and there exist possibly other notes
m https://stackoverflow.com/questions/42358211/adding-a-print-statement-speeds-up-code

-by-an-order-of-magnitude

93

https://stackoverflow.com/questions/42358211/adding-a-print-statement-speeds-up-code-by-an-order-of-magnitude
https://stackoverflow.com/questions/42358211/adding-a-print-statement-speeds-up-code-by-an-order-of-magnitude

And that’s all folks!

Optimization is fun, and it comes with

many trade-offs

o It's better to say there are ‘strategies’
versus ‘patterns’ -- the reality is we have
lots of strategies to choose from versus
cookie cooker solutions, and optimizing is
often very iterative.

o (Slides and code will be available for this
talk)

Make sure to go read the original
Knuth paper so you can tell folks that
you know the full quote! (i.e.
optimization is not really the root of
all evil) :)

Structured Programming with go to Statements

DONALD E. KNUTH
Stanford University, Stanford, California 94305

A consideration of several different examples sheds new light on the problem of creat-
ing reliable, well-structured programs that behave efficiently. This study focuses
largely on two issues: (a) improved syntax for iterations and error exits, making it
possible to write a larger class of programs clearly and efficiently without go to state-
ments; (b) a methodology of program design, beginning with readable and correet,
but possibly inefficient programs that are systematically transformed if necessary into
efficient and correct, but possibly less readable code. The discussion brings out op-
posing points of view about whether or not go to statements should be aholished;
some merit is found on both sides of this question. Finally, an attempt is made to
define the true nature of structured programming, and to recommend fruitful direc-
tions for further study.

Keywords and phrases: structured programming, go to statements, language design,
event indicators, recursion, Boolean variables, iteration, optimization of programs,
program transformations, program manipulation systems searching, Quicksort,
efficiency

CR categories: 4.0, 4.10, 4.20, 5.20, 5.5, 6.1 (5.23, 5.24, 5.25, 5.27)

94

CpplndiaCon 2023 Social: @MichaelShah
The C++ festival of India. ‘gce)blz’ses mshah.io hah i
u . courses.msnan.1o

YouTube:

Thank you www . youtube.com/c/MikeShah
Cpplndia!

Optimization Design
Patterns

Gold Sponsors

think-cell

CUBE!

10:00-11:00, Fri, 4th Aug. 2023

60 minutes | Introductory Audien&g
Bloomberg
— B W .-

https://twitter.com/MichaelShah
http://mshah.io
http://courses.mshah.io
http://www.youtube.com/c/MikeShah

Thank you!

Extras and Notes

